Note on Polynomial Interpolation to Analytic Functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Note on Polynomial Interpolation to Analytic Functions.

last upper and lower molars. Chumashius balchi cannot, therefore, be regarded as occurring in the direct line of development leading upward to the Recent tarsier. In lower dental formula Chumashius exhibits a closer relationship to Omomys and Hemi4codon than to Anaptomorphus and Tetonius. The character of the lower posterior premolars in Uintanius suffice to remove this Bridger genus from any c...

متن کامل

On Polynomial Interpolation to Analytic Functions with Singularities

Méray has given f the following illustration to show that polynomials formed from a given function by interpolation do not necessarily converge to that function. Interpolate to the f unction ƒ (s) = 1/z by means of the polynomials pn(z) of respective degreest w = l, 2, 3, • • • , required to coincide with ƒ (z) in the (n + l)th roots of unity; this condition defines the polynomials pn(z) unique...

متن کامل

On Convergence of Interpolation to Analytic Functions

In the present paper, both the perfect convergence for the Lagrange interpolation of analytic functions on [ − 1, 1] and the perfect convergence for the trigono-metric interpolation of analytic functions on [ − p, p] with period 2p are discussed.

متن کامل

A note on cubic polynomial interpolation

“The NURBS Book” [L. Piegl, W. Tiller, The NURBS Book, second edn, Springer, 1997] is very popular in the fields of computer aided geometric design (CAGD) and geometric modeling. In Section 9.5.2 of the book, the well-known problem of the local cubic spline approximation is discussed. The key in local cubic spline approximation is cubic polynomial interpolation. In this short paper, we present ...

متن کامل

On Chebyshev interpolation of analytic functions

This paper reviews the notion of interpolation of a smooth function by means of Chebyshev polynomials, and the well-known associated results of spectral accuracy when the function is analytic. The rate of decay of the error is proportional to ρ−N , where ρ is a bound on the elliptical radius of the ellipse in which the function has a holomorphic extension. An additional theorem is provided to c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the National Academy of Sciences

سال: 1933

ISSN: 0027-8424,1091-6490

DOI: 10.1073/pnas.19.11.959